

The 1st INTEGRAL Data Analysis Workshop, ISDC, Versoix

A new timing analysis of ISGRI data combining Rayleigh test and PIF method

Clément CABANAC Laboratoire d'Astrophysique de Grenoble (LAOG), France

Laboratoire d'AstrOphysique de Grenoble

Standard timing analysis

Problem with coded mask aperture

(2)

3

If SRC1 luminosity sinusoidally oscillating at frequency f1 and SRC2 luminosity oscillating at frequency f2

CONFUSION between both sources signal

Standard timing analysis with ISGRI data

Back to the event files… And the PIF…

- At shorter time scales, less statistic
- difficulty to analyze the signal at high frequency Idea : using directly the event file produced by the command evts_extract available with OSA 4.1 package.

	□ TIME 1D d	□ PIF_1 1D	☐ PIF_2 1D
1	1.160362912531E+03	0.00000000000 0E+ 00	7.441939115524E-01
2	1.160362912541E+03	8.988144993782E-01	0.00000000000E+00
3	1.160362912546E+03	0.000000000000E+00	1.00000000000E+00
4	1.160362912574E+03	0.000000000000E+00	7.079735398293E-01
5	1.160362912580E+03	2.442847341299E-01	9.948028326035E-01
6	1.160362912589E+03	0.000000000000E+00	0.00000000000E+00
7	1.160362912597E+03	5.593928694725E-01	1.00000000000E+00
8	1.160362912607E+03	0.000000000000E+00	3.708754181862E-01
9	1.160362912646E+03	0.000000000000E+00	1.00000000000E+00
10	1.160362912650E+03	0.000000000000E+00	1.00000000000E+00
11	1.160362912717E+03	3.039270937443E-01	0.00000000000E+00

Typical event files

- PIF : "Pixel Illumination Factor" ∈
 [0,1] ≈ probability that each
 source illuminates a considered
 pixel
- Each event k (k ∈ [1,n_{event}]) described by its arriving time t_k on the detector and its PIF value p_{k,j} (j ∈ [1,#source in the FOV]).

The Rayleigh test

Case of a non pulsating source

Choice of a pulsation ω Phase $\varphi_k = \omega t_k$ of each event randomly distributed

$$\Rightarrow \sum_{k=1}^{n} e^{vent} e^{i.\omega.t_k} = 0$$

Case of a pulsating source emitting at $\omega_1 = 2\pi f_1$ More photons detected by detector at each period $T_1 = 1/f_1$ If $\omega = \omega_1$ a lot of cos(ω .tk) (or sin(ω .tk)) added constructively $\Rightarrow \sum e^{i.\omega.t_k} \approx I_{\omega}.e^{i.\psi} \neq 0$ $\forall \omega \neq \omega_1$

Principles of the algorithm

In reality more than 1 source in the FOV Linear fit \Rightarrow Hyperplane fit (in PIF_{src1}, PIF_{src2},... plane) $\Rightarrow I_{0,src1}, I_{0,src2}, \dots, B_{0}$.

EVENT FILE Discretization of the PIF plane $Loop : 0 \Rightarrow 0 + \Delta 0$ Hyperplane fit Hyperplane fit Hyperplane fit Hyperplane fit Hyperplane fit

Two oscillating simulated sources

Two sources (distant from 1° in the sky) emitting through the mask & oscillating at f1 = 0.58 & f2 = 0.71 by a MonteCarlo-like procedure + background (constant).
 => 9000 events (3000 for each source and 3000 for background)

Preliminary results

Conclusion and perspectives

Detection of each signal separately. Background contribution cancelled if constant. Adapted for signal where phase = constant (pulsar) Code written in Yorick

- Tests on real data (two pulsars in ISGRI FOV = ideal)
- Improvement of the algorithm to detect QPOs (phase of the signal non constant)
- A lot of application in sight…
- Work in progress…

The 1st INTEGRAL Data Analysis Workshop, ISDC, Versoix

A new timing analysis of ISGRI data combining Rayleigh test and PIF method

Clément CABANAC Laboratoire d'Astrophysique de Grenoble (LAOG), France

Laboratoire d'AstrOphysique de Grenoble