OMC data analysis

Albert Domingo Garau The 1st INTEGRAL Data Analysis Workshop ISDC, Oct 5-8, 2004

Talk outline

- OMC main characteristics
- Some hints on operations
- OSA overview
- Algorithms description

The Optical Monitoring Camera: OMC

- OMC provides simultaneous optical photometry of the high energy sources being observed by IBIS, SPI and JEM-X
- It monitors also up to 100 potentially variable sources within its FoV in each pointing

OMC main characteristics

Field of view Aperture Focal length **Optical throughput** System point spread function CCD pixels Angular pixel size CCD quantum efficiency Time resolution Typical integration times Wavelength range Limiting magnitude Sensitivity to variations

$5^{\circ} \times 5^{\circ}$

50 mm 153.7 mm (f/3.1) > 70 % at 550 nm Gaussian with FWHM ≈ 1.4 pix 1056 x 2061 (1024 x 1024 image area) 17" 5 x 17" 5 88 % at 550 nm > 3s10 - 200 sV filter (centred at 550 nm) < 18 (V) (10×200 s, 3σ) $\Delta V = 0.005 (V=9)$ to $\Delta V = 0.15 (V=16)$ (depending on crowding)

Large Magellanic Cloud region 5°×5°

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

OMC sub-windows I

Point sources

Extended source (mosaic of sub-windows)

OMC sub-windows II

Photometric shot

Science shot 200 seconds

OMC sub-windows III

The 1st INTEGRAL Data Analysis Workshop

Overview of OMC data processing at ISDC

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

ISDC, Oct 5-8, 2004

Off-line Scientific Analysis (OSA)

- A single script, omc_science_analysis runs the scientific analysis for an Observation Group of OMC data.
- For each Science Window Group it calls omc_scw_analysis.

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

For each box in each shot:

- Bias determination (time dependent)
- Bias and dark current removal
- Flatfield correction (pixel sensitivity)

Data Correction

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

ISDC, Oct 5-8, 2004

Off-line Scientific Analysis (OSA)

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

Off-line Scientific Analysis (OSA)

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

Science Analysis

Performs aperture photometry to obtain the fluxes of the individual sources.

Usually combines several shots to obtain a better signal-to-noise ratio.

Process photometric and science targets (corrected sub-windows)

Perform some checks on:

- GTI
- prp data to select good shots
- prp data to select good boxes
- Bad pixels
- Saturated pixels
- User parameters (e.g. shot integration time)
- Detect mosaics of sub-windows (extended sources)

Combine several shots to get a better signal-to-noise ratio

(the number of shots combined depends on elapsed time given by the user as a parameter)

Compute and subtract the sky background from each sub-window

- Uses the 11×11 exterior rim
- Rejection of high and low pixels to avoid cosmic rays and noisy pixels

Perform aperture photometry in combined boxes

- Compute the source centroid ()terative process).
- Integrate the flux in i × i, 3×3 and 5×5 apertures using a pixel sub-sampling method
- Correct for different apertures integrating the PSF

Detect source contamination, non point sources, saturated sources or wrong sources by analysing the shape of the PSF

22

PSF depends on lens temperature, but... Modelling is difficult

PSF width determination II

- PSF width depends on pixel location over the CCD.
- Relation is linear
- Probably the detector is slightly tilted.

Implemented solution:

- Use faint photometric stars to compute the PSF width
- Iterative method to minimize the residuals in each pixel according to a Gaussian PSF profile:
 - ✓ Fitted values:
 - X and Y centroid
 - > PSF width
- Combine the same number of shots as in science integrations
 - ✓ Advantage: it is an effective PSF

Source centroid I

Source centroid changes with time

Why?

- 1. OMC thermoelastic deformations
- 2. Variation of lens temperature

The 1st INTEGRAL Data Analysis Workshop

Source centroid II

Implemented solution:

- Similar to the PSF width calculation
- Iterative method to minimize the residuals in each pixel according to a Gaussian PSF profile and the previously computed width:
 - ✓ Fitted values:
 - X and Y centroid

Photometric apertures

Main goals

- Minimize the effect of source companions
- Correct the displacements of the source centroids

Please, enjoy running OMC OSA

And, do not forget o_src_collect and o_ima_build, tools distributed with OSA Software as well

A. Domingo Garau

The 1st INTEGRAL Data Analysis Workshop

ISDC, Oct 5-8, 2004