

Offline Scientific Analysis

OSA 5.0/5.1

Stéphane Paltani

on behalf of many people ...

OSA in context


Science data Housekeeping Auxiliary data Calibration data

Instrument Configuration Catalog(s) User inputs **Technical Processing** *telemetry decoding, auto-calibration, time stamps, (corrections, GTIs, deadtimes)*

Scientific Analysis (corrections, GTIs, deadtimes), catalogs, background, binning, image deconvolution, source search, source spectra, source lightcurves

Images, Source Lists, Spectra, Light Curves

FTOOLS, XSPEC, XRONOS, private S/W further analysis, model fitting, ...

Scope of OSA

What OSA software is supposed to do:

- Corrections, if needed
- Dead-time calculation, good-time interval selections
- Image reconstruction (including mosaics)
- Source identification and extraction
- Count extraction (spectra, light curves)
- Handling of Instrument Characteristics (IC)

What OSA software does <u>not</u> do:

- Image analysis
- Spectral fitting
- Timing analysis (period search, FFT, ...)

OSA constraints

Data are <u>complex</u> (detectors, coded-mask, ...)

- <u>No true imaging</u>, except for OMC
- Analysis of Integral data requires <u>many steps</u>, algorithms
- <u>Scripts</u> are needed to ease the analysis

Data sets are <u>huge</u>, cut into a large number of pointings, many different files

- <u>Size</u> is already a serious difficulty (disk space, CPU time,...)
- Users must be able to group pointings arbitrarily
- Users must be isolated from the data complexity

Many calibration files, instrument model data, complex versioning

• Must be handled through a (kind of) "database"

OSA components

Generic tools

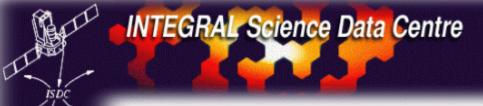
- Developed and maintained by <u>ISDC</u>
- FTOOL-like

dal_list dol=my_file.fits[1]

• Written in C

Instrument-specific executables

- Developed and maintained by Instrument Teams
- FTOOL-like
- Some components written in F90


Analysis scripts

- Developed and maintained by ISDC/Instrument Teams
- C++ scripts based on ROOT and isdcroot
- Work in <u>script</u>, <u>command-line</u> or <u>GUI</u> modes

OSA installation & beyond

- Binaries of OSA >= 5.0 are available for i386/Linux, SPARC/Solaris and PowerPC/MacOSX. OSA is now very easy to install
- Sources for the rest of the Unix world. More involved.
- Does not require any commercial software anymore
- <u>30</u> libraries / <u>180</u> executables with documentation
- File repository with precise structure must be created by the user

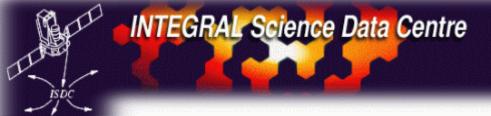
File repository

aux cat ic idx swg og

- aux: Auxiliary data; attitude, orbit, program, ... (downloaded from the Archive)
- cat: Source catalogue (downloaded with OSA)
- ic: Instrument characteristics; calibration, instrument models, ... (downloaded with OSA)
- idx: Index tables; sort of databases...
- swg: Science Window data; instrument data (downloaded from the Archive)
- og: Observation data; products generated by OSA

OSA commonalities

ISDC has defined several concepts used for all instruments


Data formats (~ 1'300 "templates")

• Support software libraries

- PIL: Parameter Interface Layer (IRAF-like parameters)
- RIL: Reporting Interface Layer (Logs, error messages)
- DAL: Data Access Layer (plus DAL3XXX, ISDC-specific avatars)

• Groups

- Science Window Groups
- Observation Groups
- Index tables (plural of "index")
- Scripts and GUIs

Parameter Interface Layer

PIL essentially reimplements IRAF/FTOOL parameter syntax

• Each component (executable/script) has a parameter file

dol,s,q,"",,,"Input DOL"
extname,s,h,"",,,"Extension name, wild cards allowed"
exact,b,h,no,,,"Exact?"

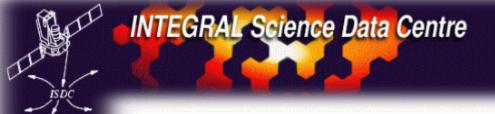
• Parameters can be gueried or hidden

• Parameters can be set on the command line

dal_list dol=my_file.fits[1]

• Try:

dal_list --help



Reporting Interface Layer

•RIL provides a <u>common logging/error messaging interface</u> to the developpers

• For the users, allows easy <u>control of the output</u> (screen vs log file), whether in interactive or in batch mode

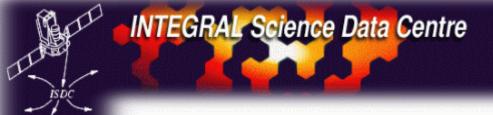
isdcprv18:~ 119 > dal_verify crab_pha2.fits Log_1 : Verifying crab_pha2.fits[JMX1-PHA2-PE,1,BINTABLE] Error_1: input date string has illegal format: Error_1: UTC_format Warn_3 : DATE-OBS keyword values (UTC_format) is not valid Warn_3 : DATE-END keyword values (UTC_format) is not valid Error_1: Total number of errors: 2, Warnings: 2 Warn_2 : About to flush all DAL buffers, an error has occurred. Warn_2 : There may be data loss, and the program may crash! Error_2: there is at least an error Error_2: Task dal_verify terminating with status -35560

Data structures & Data Access Layer

- DAL is a layer on top of cfitsio
- FITS allows <u>several "extensions"</u> to be part of the same file: Data structures
- DAL/OSA always <u>require data structures</u> myfile.fits ---> myfile.fits[2]
- (actually ... [1] is the default)
- DAL implements <u>hierarchical grouping</u>
- DAL3 implements index handling

myfile.fits

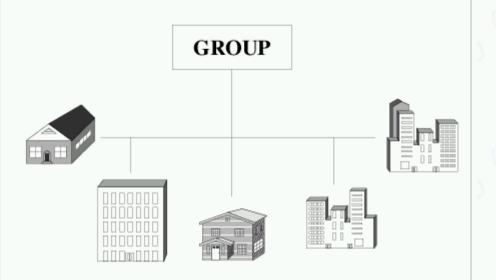
Primary extension
key1=this_value
keyother=42

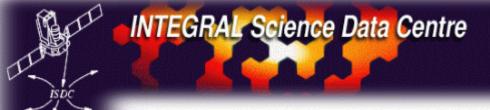

DATA

lst_extension
key17=other_value
morekey=3.1415

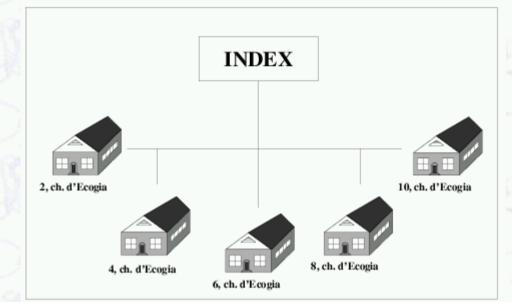
DATA

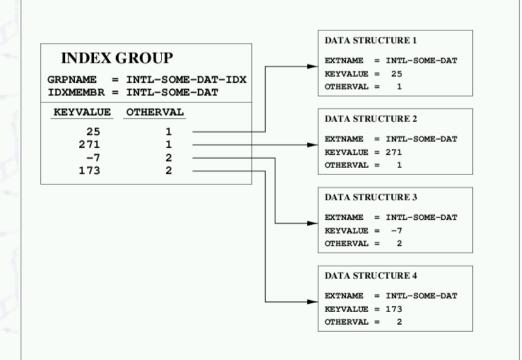
2nd extension
yetakey=no_value
keyagain=100


DATA


• FITS allows special data structures that <u>do not contain</u> any data, but only points to other data structure

Best analogy: directory


• <u>Science Window groups</u> contain all the data generated by INTEGRAL during a Science Window (pointing, slew,...)


• <u>Observation groups</u> group Science Windows on the basis of <u>user-defined criteria</u> and all the results from OSA. These are the basic blocks of an OSA analysis



Index tables

- Index tables are special that contain several instances of <u>similar</u> <u>data structures</u> with different "metadata"
- Best analogy: databases
- IC files valid for different periods are "stored" in an Index
- Spectra of all sources found in a pointing are "stored" in an Index



Scripts

• The analysis of the data from a single INTEGRAL instrument requires <u>a few tens</u> of executables

- Scripts are necessary to help users to run an entire analysis <u>in the</u> <u>correct order</u>
 - Steps are called "Level": COR, DEAD, GTI, IMA, SPE, LCR, ...
 - There is complete flexibility in the Level sequence, except order
- ISDC scripts are actually <u>C++ code</u> with isdcroot/ROOT classes

• C++ is not mandatory... Advanced users can develop their own scripts in shell, Perl, Python, tcl, ..., but, for the moment, the need to provide scripts in more user-friendly languages that users can reuse, modify is not that obvious...

Graphical user interfaces

- GUIs exist for <u>all instruments</u>
- Simplify <u>parameter filling</u> for interactive sessions, with little loss of capabilities
- Hides "hidden" parameters for the faint of heart
- With OSA 5.1, GUIs really become parameter editors
 - <u>Save command lines</u>
 - Load parameters from scripts
 - Can also be used as regular GUI's!

***	spi_science_analysi	s · • ×
SPI Scientific Analysis - General Parameters and Options		
Filename of input OG: og_spi.fits		<u>S</u> ave As <u>R</u> un
List of (pseudo) dete	ctors: 0-18	Quit
Coordinate Sy	stem: RADEC 💌	<u>H</u> elp hidden
OPTIONAL first task (check output before proceeding with further tasks)		
CAT_I :	catalogue extraction: 🔽 🔤	catalog
SPIROS Input Catalog: source_cat.fits[1]		
-Select Tasks to run		
POIN :	pointing definition: 🔽 🔤	pointing
BIN_I :	event binning: 🔽 🔤	energy_definition
	Γ	histogram
add simulated source (OPTIONAL): 🗖		add_simulation
BKG_I :	background modeling: 🗹 🗌	background
IMA :	image analysis: 💌 📃	spiros

What next?

- OSA 5.1 is almost there
 - Important SPI bug fix
 - Additional ISGRI ARFs
 - Important improvement of Jem-X responses
 - More clever GUIs
 - Several bug fixes

• OSA 6.0 is in discussion stage

- Release planned early next year
- Jem-X spectrum extraction software
- Other imaging methods for SPI?
- Phase-resolved spectroscopy
- Improvements foreseen in calibration of most instruments
- Bug fixes, usability and miscellaneous improvements