
Data analysis with OMC: Examples

Daniel Rísquez

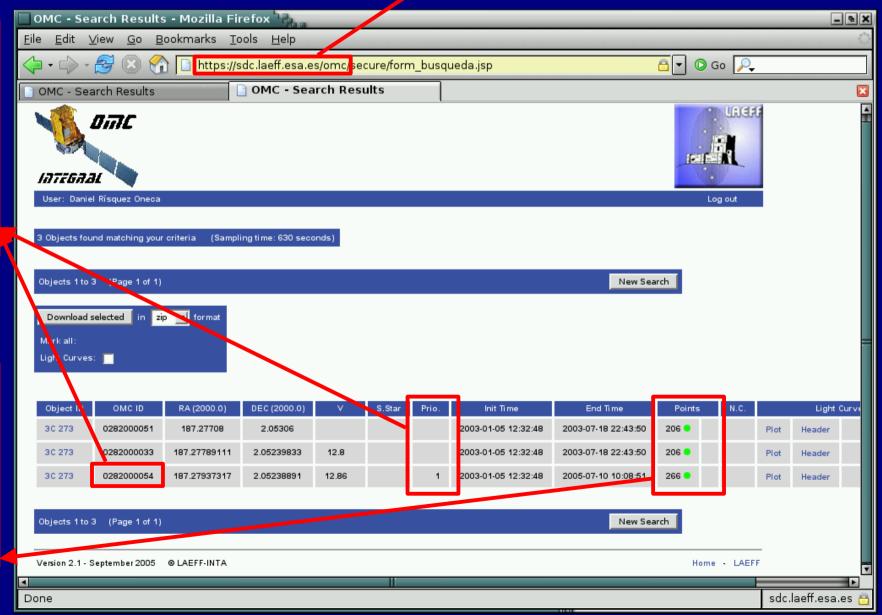
Talk outline

Create light curves.

- Executing the Standard Offline Analysis.
- Understanding the results.
- Caveats.
- Create images.
 - Subwindows.
 - Mosaics: Images for extended sources, or sources with inaccurate coordinates.
 - Triggers: These images are similar to mosaics, but they are not corrected by CCD effects (BIAS, dark current and flatfield).

Required information

- 1. Observation group.
 - The standard analysis will process all sources in SCWs.
 - You may create an observation group with the SCWs where your source is observed.
- 2. OMC identification number or object coordinates. You can search the OMC identifier at:
 - LAEFF <u>http://sdc.laeff.esa.es/omc</u>
 - ISDC <u>http://isdc.unige.ch</u>


Example: 3C 273 = IOMC 0282000054

OMC identifier

Choose the OMC ID with the lowest number in the priority column.

It should have the greatest number of observed points.

OMC web database

Executing the Offline Standard Analysis

c science analysis

omc_science_analysis

We will process 3C 273 as example.

- COR: standard optical CCD processing: BIAS, dark current, and flatfield.
- GTI: Good Time Intervals.
- IMA: Create fluxes and build images.
 IMA2: Collect data.

General ——				<u>S</u> ave
0	gDOL: ./og_omc.fits[GRO	DUPING]	browse	<u>S</u> ave /
star	tLevel: COR 💌			<u>R</u> un
end	lLevel: IMA2 💌			<u>Q</u> uit
				<u>H</u> elp
– Good Time In	tervals ———			hidde
GTL	qtiUser:		browse	
-			erowse	
GTI_TimeF	Format: JJD 🔽	_		
GTI_Acc	curacy: any 💌]		
-Source Fluxe	s and images			
IMA_tim	nestep: 🚺 🛢	IMA_onlyImage: 🗖 cheo	cked: yes	
IMA_minsh	nottime: 🚺	IMA_scienceImage: 🗖 cheo	cked: yes	
IMA_maxsh	nottime: 🛛 300 🚔	IMA_triggerImage: 🗖 cheo	cked: ves	
IMA_IIIaAsii		= 00 0 - 000		

Executing the Offline Standard Analysis

- You could combine shots up to timestep exposure in seconds.
 It increases the signal to noise ratio.
- The first time it is a good idea not to combine (**timestep=1**).
- Remember exposure cycles:
 - 10, 30 and 100 sec (until 2004/august).
 - 10, 50 and 200 sec (nowadays).
- Typical *timestep* values:
 - 1: do not combine. Process image by image.
 - 630 sec: the standard.
 - 9000 sec: combine all images in SCW (maximum).

omc_science_analysis	- • ×
General	<u>S</u> ave
ogDOL: ./og_omc.fits[GROUPING] browse	<u>S</u> ave As
startLevel: COR 💌	<u>R</u> un
endLevel: IMA2 💌	<u>Q</u> uit
	<u>H</u> elp
Good Time Intervals	hidden
GTI_gtiUser: browse	
GTI_TimeFormat: IJD 🔻	
GTI_Accuracy: any	
Source Fluxes and images	
IMA_timestep: 1	
IMA_minshottime: 0 IMA_scienceImage: C checked: yes	
IMA_maxshottime: 300 🚔 IMA_triggerImage: 🗖 checked: yes	
IMA_omc_id:	

Executing the Offline Standard Analysis

omc_science_analysis

- Process only shots with exposures between these values in seconds.
- These values process all shots (it is a good idea with timestep=1).
- Weak sources (V>12mag): Ignoring shorter shots (10, 30, even 50 sec) can increase the signal to noise ratio of the combined images.
- Bright sources (V<10mag): Long shots could saturate, ignore them.

omc_science_analysis	_ = ×
General	<u>S</u> ave
ogDOL: /og_omc.fits[GROUPING] browse startLevel: COR endLevel: IMA2	<u>S</u> ave As <u>R</u> un <u>Q</u> uit <u>H</u> elp
Good Time Intervals GTI_gtiUser: browse GTI_TimeFormat: IJD GTI_Accuracy: any	hidden
Source Fluxes and images IMA_timestep: 1 IMA_onlyImage: Checked: yes IMA_minshottime: 0 IMA_scienceImage: Checked: yes IMA_maxshottime: 300 IMA_triggerImage: Checked: yes IMA_omc_Id:	

Executing the Offline Standard Analysis

omc_science_analysis

		omc_science_analysis	- = X
		General	<u>S</u> ave
			<u>S</u> ave As
		startLevel: COR 🔽	<u>R</u> un
		endLevel: IMA2 💌	<u>Q</u> uit
			<u>H</u> elp
		Good Time Intervals	hidden
		GTI_gtiUser: browse	
Options for		GTI_TimeFormat: IJD 💌	
-		GTI_Accuracy: any	
creating			
mages.		Source Fluxes and images	
Uncheck them		IMA_timestep: 1 🚔 IMA_onlyImage: 🗖 checked: yes	
		IMA_minshottime: 0 🚔 IMA_scienceImage: 🗖 checked: yes	
for light curves.		IMA_maxshottime: 300 🚔 IMA_triggerImage: 🗖 checked: yes	
		IMA_omc_id:	

Executing the Offline Standard Analysis

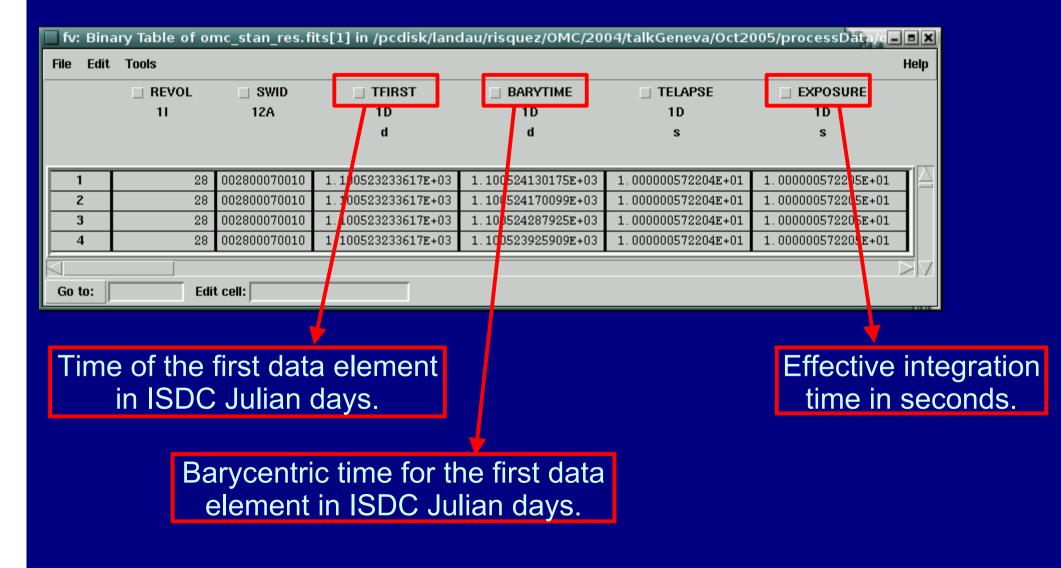
omc_science_analysis

Hidden parameters have been chosen by the OMC team and should not be modified by a novel user.

Understanding the results

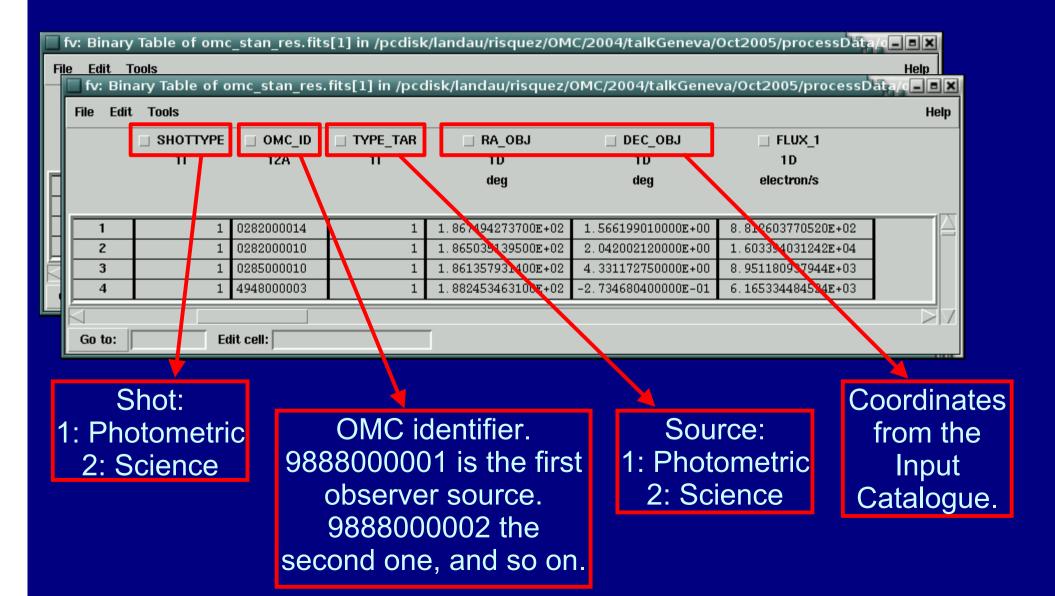
fv omc_stan_res.fits

fv (Fits View) is a *ftool* utility


90991 photometric points

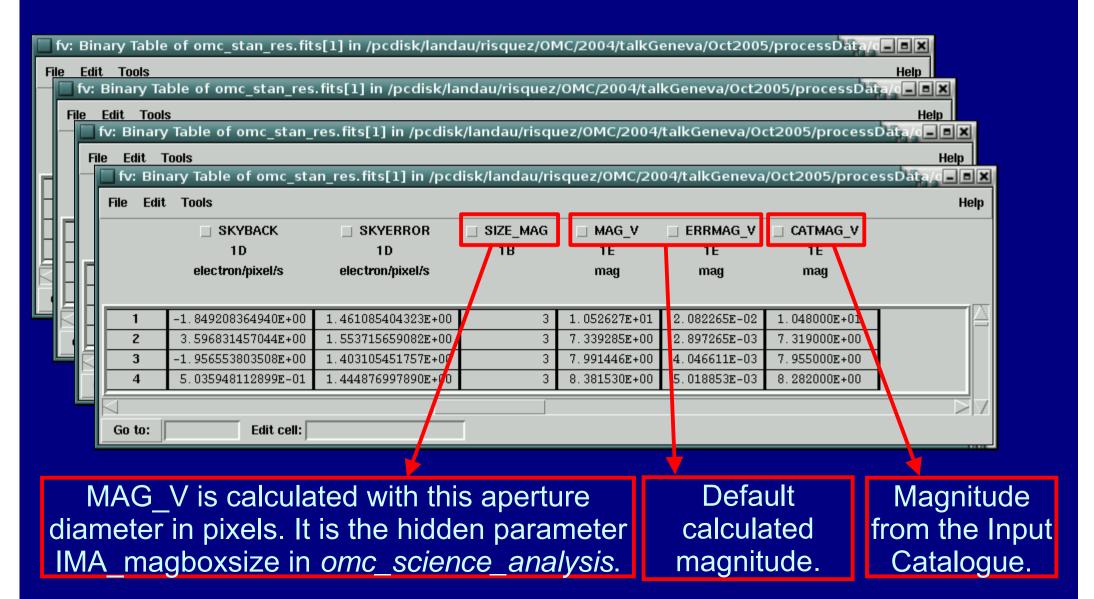
🗌 fv: Sum	mary of omc_stan_re	s.fits in /	pcdisk/landau/risqu	ue://OMC/	2004/talkGe	eneva/Oct2
File Edit	Tools					Help
Index	Extension	Туре	Dimension		View	
0	Primary	Image	O	Header	Image	Table
□ 1	OMCSTAN-RES	Binary	45 cols > 90991 rows	Header	Hist Plot	All Select

- 3C 273 results table. All photometric points in those SCWs are together in the same file:
 - Photometric stars (TYPE_TAR==1).
 - Our source, in this case 3C 273 (TYPE_TAR==2 and OMC_ID=='0282000054').
 - Other science sources (TYPE_TAR==2).



fv omc_stan_res.fits

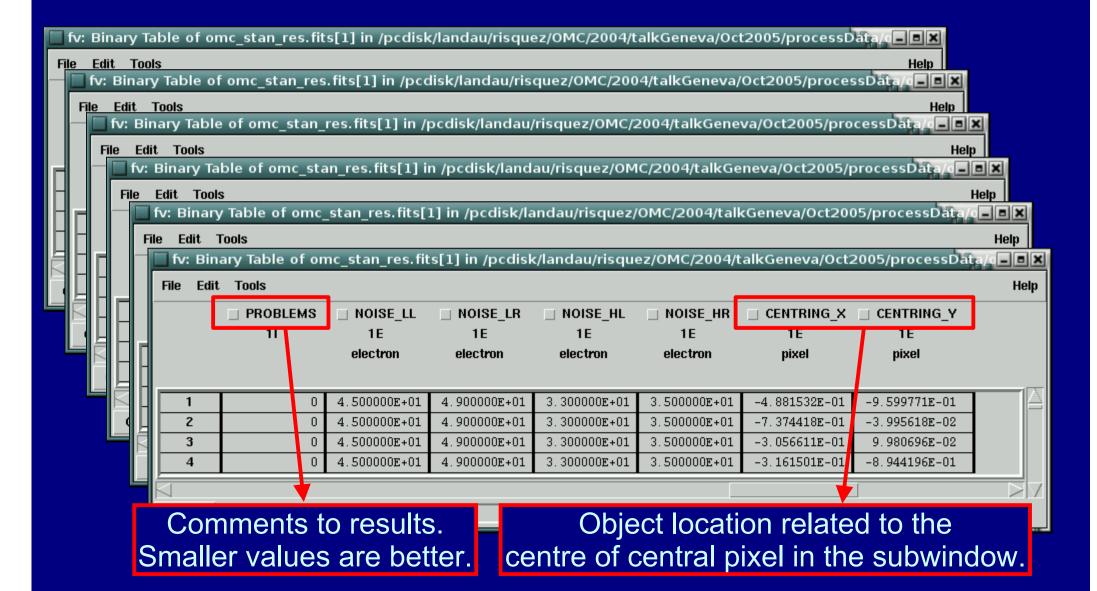
fv omc_stan_res.fits


fv omc_stan_res.fits

fi <u>le</u>		Binary Tal Edit Tools		.fits[1] in /pcdisk/la	ndau/risquez/01	MC/2004/talkGeneva/00	t2005/processData	Help
-	file		Table of omc_stan_	res.fits[1] in /pcdisk	:/landau/risquez	z/OMC/2004/talkGeneva	/Oct2005/processD	ata/c _ 0 × Help
ŀ	-			n_res.fits[1] in /pcd	lisk/landau/risq	uez/OMC/2004/talkGen	eva/Oct2005/proces	
		File Edit	Tools					Help
			ERFLUX_1	☐ FLUX_3	□ ERFLUX_3	□ FLUX_5	ERFLUX_5	
	Ы		electron/s	electron/s	electron/s	electron/s	electron/s	
	Ц	1	1.050360956685E+01	8.441250296097E+02	1.618675594089	E+01 8.620250586625E+02	2.253883677040E+0	L 🔤
	Ц	2	4.032885822693E+01	1.589277670163E+04	4.211254323466	E+01 1.617200183809E+04	4.532824074044E+0	1
		3	3.028432941424E+01	8.716371152559E+03	3.237006067696	E+01 8.912120448635E+03	3.618907345821E+0	1
		4	2.527688868287E+01	6.085582517036E+03	2.806531578338	E+01 6.306647876120E+03	3.249671579202E+0	1
		Go to:	Edit cell:					10.0

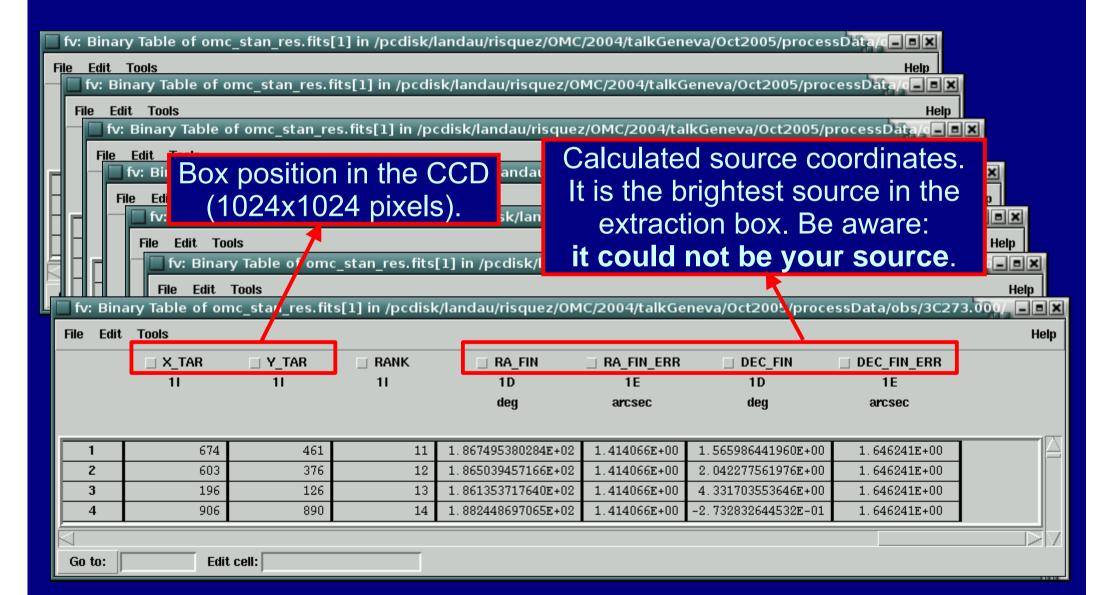
Fluxes and errors calculated in 3 different aperture diameters (1, 3 and 5 pixels). The analysis software assumes in all cases point sources.

fv omc_stan_res.fits


fv omc_stan_res.fits

	fv:	Bin	iary	/ Tab	le of	omc_stan_res.	fits[1] in /pcd	isk/landau/risc	quez/OMC/200)4/talkGeneva/(Oct2005/proce	ssData/o <mark>=</mark> ■ X	
Fi				Fools								Help	
		fv:	Bin	ary 1	Fable	of omc_stan_r	es.fits[1] in /p	ocdisk/landau/	risquez/OMC/.	2004/talkGenev	/a/Oct2005/pro	ocessData/o	
	Fil	e	Edit	t To	ols							н	lelp
			fv:	Bina	ry Tal	ble of omc_sta	n_res.fits[1] ir	n /pcdisk/landa	au/risquez/O№	1C/2004/talkGe	neva/Oct2005/	/processData/o	_ = ×
		Fil	e	Edit	Tools	;							Help
E				ív: Bi	nary	Table of omc_s	stan_res.fits[1] in /pcdisk/la	ndau/risquez/	OMC/2004/talk	Geneva/Oct20	05/processData	
ΙH			File	e Ed	lit Te	ools							Help
ΙH	Ы	ľ	-	🗌 fv	: Bina	ary Table of on	nc_stan_res.fit	s[1] in /pcdisk	c/landau/risqu	iez/OMC/2004/t	alkGeneva/Oct	t2005/processD	ata/o_BX
	Н			File	Edit	Tools							Help
		П				CATERR_V	🔲 MAG_V1	ERMAG_V1	_ MAG_V3	☐ ERMAG_V3	☐ MAG_V5	ERMAG_V5	
	Ш					1E	16	1E	1E	1E	16	16	•
						mag	mag	mag	mag	mag	mag	mag	
		Ц											
Ŀ		\leq	Ш		1	2.000000E-02	1.047952E+01	1.294525E-02	1.052627E+01	2.082265E-02	1.050349E+01	2.839014E-02	
			Н		2	1.900000E-02	7.329684 E +00	2.752232E-03	7.339285E+00	2.897265E-03	7.320375E+00	3.062382E-03	
					3	1.900000E-02	7.962584E+00	3.689260E-03	7.991446E+00	4.046611E-03	7.967332E+00	4.422071E-03	
					4	2.100000E-02	8.367393E+00	4.464487E-03	8.381530E+00	5.018853E-03	8.342789E+00	5.605012E-03	
		L		Ā									
				Go	to:	Edit	cell:						
			l				1						TITLE

Magnitudes calculated with each aperture diameter. In this case, MAG_V=MAG_V3 (because SIZE_MAG=3)



fv omc_stan_res.fits

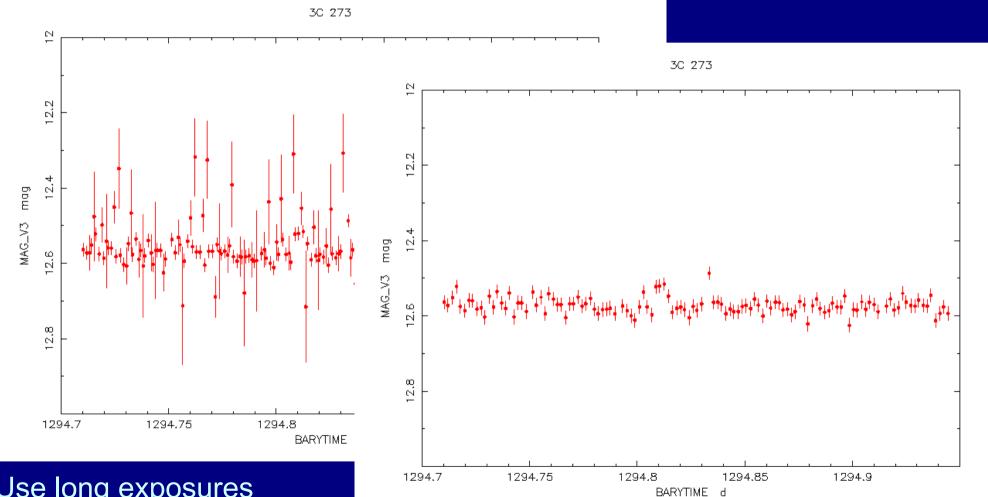
fv omc_stan_res.fits

Select source

- Now, we have the file with all photometric results in the observation group.
- You must select your data from the file.
 - By OMC_ID:

fcopy "omc_stan_res[OMC_ID=='0282000054']" 3C273.fits

• By coordinates:


fcopy "omc_stan_res[RA_OBJ>187.277&&RA_OBJ<187.278&&DEC_OBJ>2.052&&DEC_OBJ<2.053]" 3C273.fits

Some arcsecs around the Input Catalogue coordinates.

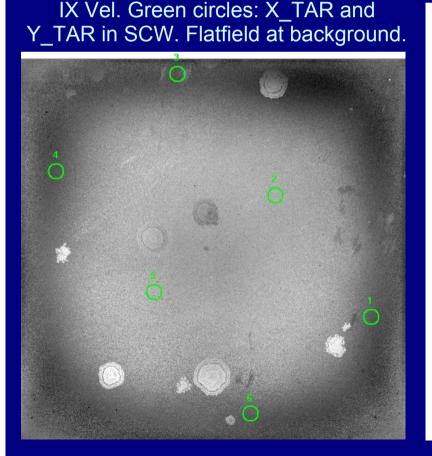
Understanding the results

MAG_V3

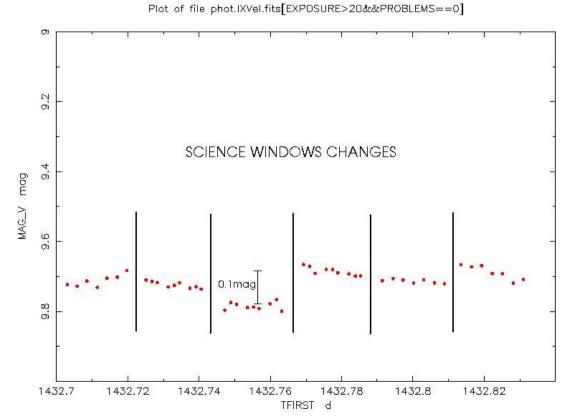
Use long exposures (100 seconds in this case) for weak sources.

MAG_V3, EXPOSURE>60

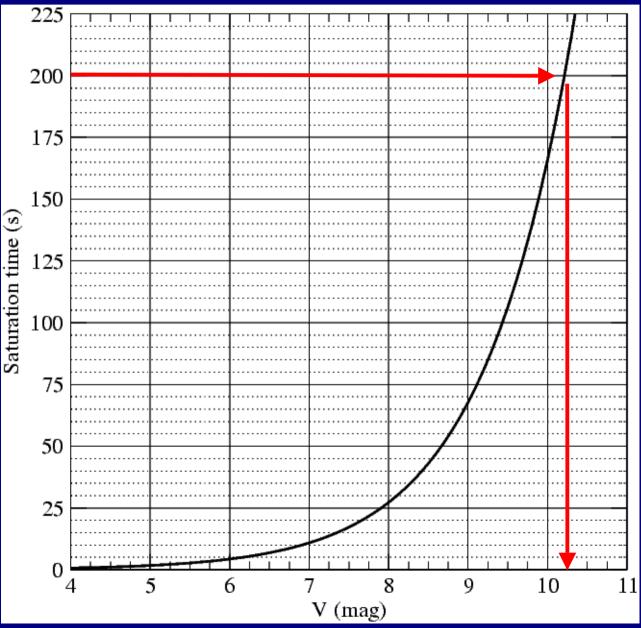
Caveats



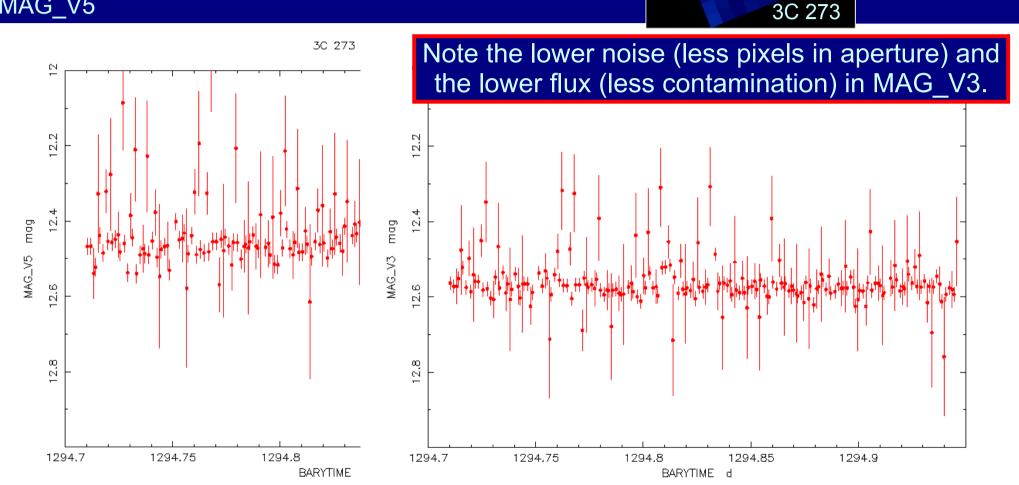
- **Dithering**. Check X_TAR and Y_TAR.
- Saturations. Check your expected magnitude. Check magnitude versus EXPOSURE.
- Contaminated flux. Check images, you could have a close companion. Flux contaminations from other sources may include systematic effects. Check centroid coordinates.
- Global CCD sensitivity. At the beginning of the mission, the CCD sensitivity changed quickly. Check photometric stars.
- Centring in a close source. The magnitude could be calculated for the other source! Check RA_FIN and DEC_FIN.
- Cosmic rays and readout noise. Check images. They do not have a gaussian profile.


Caveats: dithering

 Sometimes you can have small offsets (up to 0.1 mag) due to the dithering pattern. This can be identified easily because it is constant for the full SCW.


IX Vel. Black lines mark SCW changes.

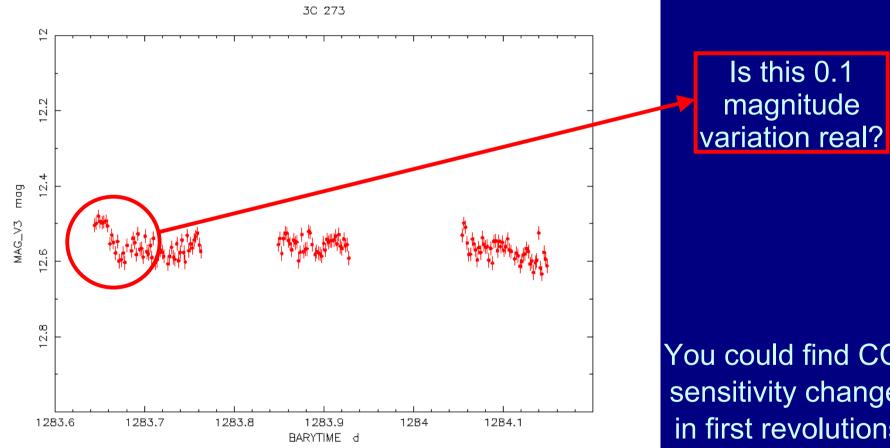
Caveats: saturations



- Saturation curve (see User Manual).
- 200 seconds is the longest exposure. It saturates sources with V≈10.2 mag.
- 3C 273 has V≈12.8 mag, then it will never saturate.

Caveats: contamination

MAG_V5

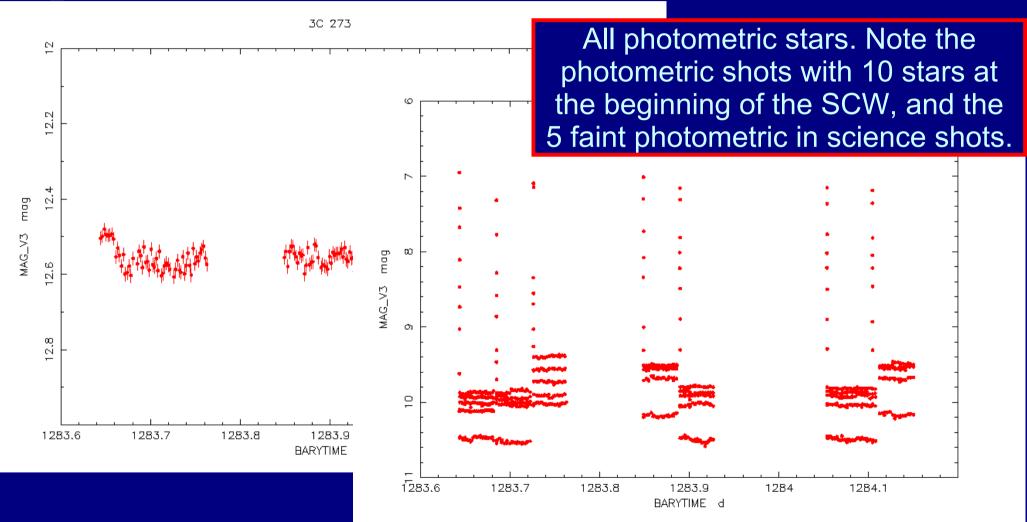

4:(41)

MAG_V3

- Standard analysis process always 1, 3, and 5 pixels aperture diameters.
- Choose MAG_V5 for bright and isolated sources, MAG_V3 for weak or contaminated sources.
- Remember: <FWHM>≈1.3pix

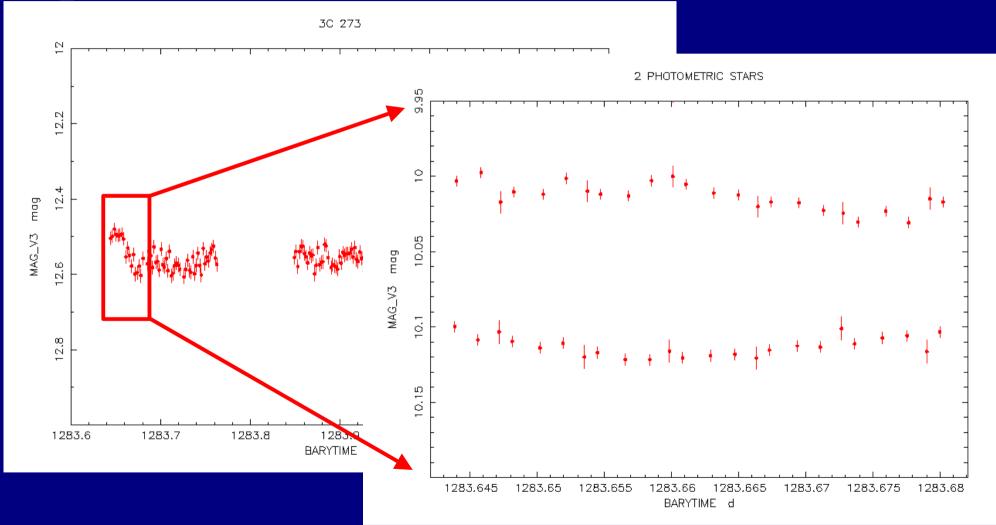
Caveats: check photometric stars

MAG_V3, EXPOSURE>60



You could find CCD sensitivity changes in first revolutions.

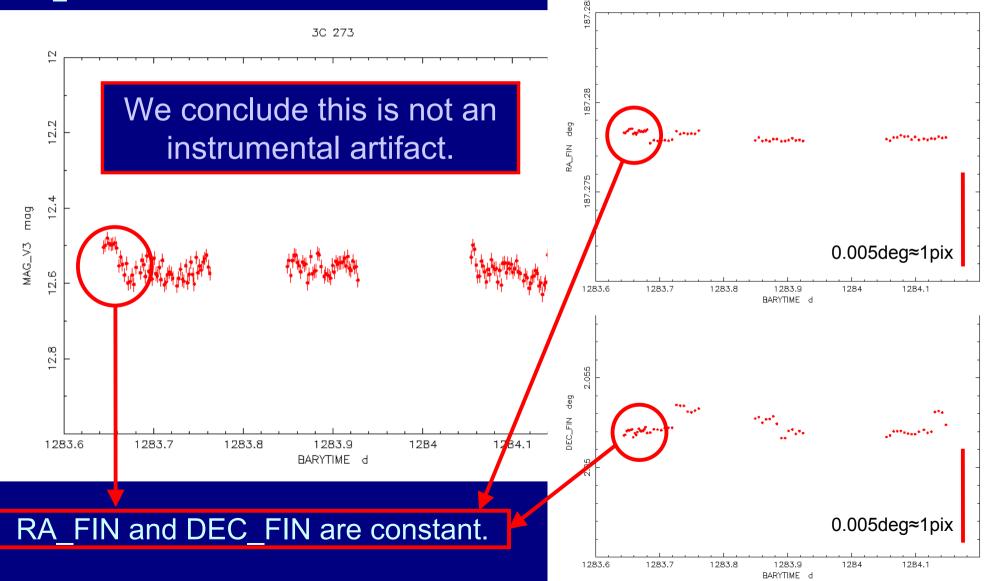
Caveats: check photometric stars


MAG_V3, EXPOSURE>60

Caveats: check photometric stars

MAG_V3, EXPOSURE>60

Zoom to 2 photometric stars in the same time scale. Their variations are smaller than 0.1 magnitude.


TYPE_TAR==1, ZOOM

Caveats: bad centring

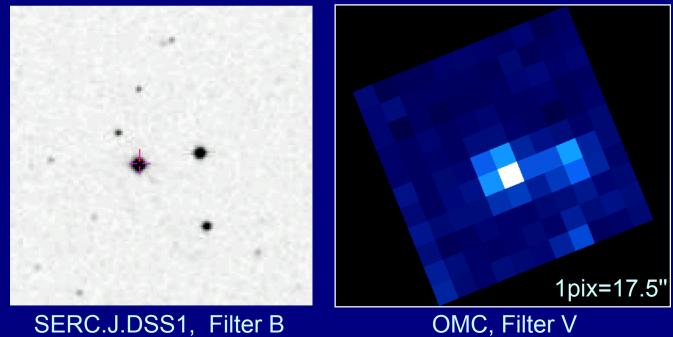
3C 273

MAG_V3, EXPOSURE>60

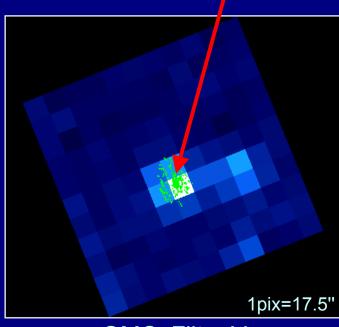
Caveats: PROBLEMS column

 \mathbf{C}

🗖 fv: Binary Table of omc_stan_res.fits[1] in /pcdisk/landau/risquez/OMC/2004/talkGeneva/Oct2005/processData/o											
F	ile Edi	it Tools									Help
		🗌 PRO	DBLEMS	NOISE_LL	□ NOISE_LR	☐ NOISE_HL		E_HR	□ CENTRING_X	CENTRING_Y	
			11	1E	1E	1E	1E		1E	1E	
				electron	electron	electron	electro	on	pixel	pixel	
	1		0	4.500000E+01	4.900000E+01	3.300000E+01	3.50000	0E+01	-4.881532E-01	-9.599771E-01	
	2		0	4.500000E+01	4.900000E+01	3.300000E+01	3.50000	0E+01	-7.374418E-01	-3.995618E-02	
	3		0	4.500000E+01	4.900000E+01	3.300000E+01	3.50000	0E+01	-3.056611E-01	9.980696 E -02	
	4		0	4.500000E+01	4.900000E+01	3.300000E+01	3.50000	0E+01	-3.161501E-01	-8.944196E-01	
	Go to:		Edit	cell:							
		J.	_								
						50		_			
					Terminal		Valu	10	Mezning		_ = ×
					Terminal Name		Valı	Je	Meaning		- 8 X
			,				Valu	Je	Meaning No problems		_ = X
_					Name OMC_PROBLEM_ OMC_PROBLEM	NONE		(2^1)	No problems The mag was ex		
Г	R	eme	mbe	r:	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID	0 .G 2 4	(2^1) (2^2)	No problems The mag was ex No centroid is	s available or is	inaccurate
Γ					Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF		(2^1) (2^2) (2^3)	No problems The mag was ex No centroid is Bad PSF. A de	s available or is fault value was u	inaccurate
ſ	Lo	wer	value	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF	0 G 2 4 8 16	(2^1) (2^2)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape	s available or is fault value was u	inaccurate
ſ	Lo	wer	value	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1	0 G 2 4 8 16 32	(2^1) (2^2) (2^3) (2^4)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra	s available or is fault value was us is anomalous al pixel too low	inaccurate
	Lo	wer		es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1 BADPIXEL_SKY BADPIXEL_RIM_5	0 G 2 4 16 32 128 256	(2^1) (2^2) (2^3) (2^4) (2^5) (2^7) (2^8)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra Bad pixel four Bad pixel four	s available or is fault value was u is anomalous al pixel too low nd in sky bgnd nd in 5x5 rim	inaccurate
	Lo	wer	value	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1 BADPIXEL_SKY BADPIXEL_RIM_5 BADPIXEL_RIM_3	0 G 2 4 16 32 128 256 512	(2^1) (2^2) (2^3) (2^4) (2^5) (2^7) (2^8) (2^9)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra Bad pixel four Bad pixel four Bad pixel four	s available or is fault value was u is anomalous al pixel too low nd in sky bgnd nd in 5x5 rim nd in 3x3 rim	inaccurate
	Lo	wer	value	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1 BADPIXEL_SKY BADPIXEL_RIM_5	0 G 2 4 16 32 128 256 512	(2^1) (2^2) (2^3) (2^4) (2^5) (2^7) (2^8)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra Bad pixel four Bad pixel four	s available or is fault value was u is anomalous al pixel too low nd in sky bgnd nd in 5x5 rim nd in 3x3 rim	inaccurate
	Lo	wer	value	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1 BADPIXEL_SKY BADPIXEL_RIM_5 BADPIXEL_RIM_3 BADPIXEL_RIM_1 SKY_ERROR	0 G 2 4 8 16 32 128 256 512 1024 4096	(2^1) (2^2) (2^3) (2^4) (2^5) (2^5) (2^7) (2^8) (2^9) (2^10) (2^12)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra Bad pixel four Bad pixel four Bad pixel four Central pixel Sky error lar	s available or is fault value was us is anomalous al pixel too low nd in sky bgnd nd in 5x5 rim nd in 3x3 rim bad ger that accepted	inaccurate sed limit
	Lo a	wer ire b	value etter	es	Name OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_ OMC_PROBLEM_	NONE EXTRAPOLATED_MA BAD_CENTROID BAD_PSF ANOMALOUS_PSF LOW_FLUX_1 BADPIXEL_SKY BADPIXEL_RIM_5 BADPIXEL_RIM_3 BADPIXEL_RIM_1 SKY_ERROR UNKNOWN_MAG	0 G 2 4 8 16 32 128 256 512 1024 4096 8192	(2^1) (2^2) (2^3) (2^4) (2^5) (2^5) (2^7) (2^8) (2^9) (2^10)	No problems The mag was ex No centroid is Bad PSF. A de The PSF shape Flux of centra Bad pixel four Bad pixel four Bad pixel four Central pixel Sky error lar Magnitude cou	s available or is fault value was us is anomalous al pixel too low nd in sky bgnd nd in 5x5 rim nd in 3x3 rim bad	inaccurate sed limit ted


- Check the field. Are there other sources? Where is the photometric algorithm centring?
- Check strange photometric points. Is there any cosmic ray or readout noise lines in the image?
- It creates files ./scw/XXXXXXXXX.001/omc_sky_ima.fits

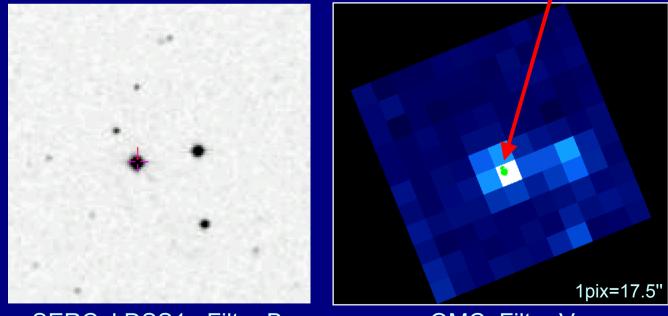
	omc_science_analysis	_ = ×
mc_science_analysis	General ogDOL: /og_omc.fits[GROUPING] browse startLevel: IMA v endLevel: IMA v	<u>S</u> ave Save As <u>R</u> un Quit <u>H</u> elp
Light curve previously processed	Good Time Intervals GTI_gtiUser: GTI_TimeFormat: IJD V GTI_Accuracy: any	hidden
Only images.		
	- Source Fluxes and images	
Only 3C273 subwindows. This field empty creates full CCD images.	IMA_timestep: 1 IMA_onlyImage: ✓ checked: yes IMA_minshottime: 60 ✓ IMA_scienceImage: ✓ checked: yes IMA_maxshottime: 300 ✓ IMA_triggerImage: C checked: yes IMA_omc_id: 0282000054 IMA_triggerImage: C checked: yes	


- Be aware with contamination. Other sources can increase the flux measured in your aperture.
- 1' (≈3 pixels) distance between different sources is a typical limit for photometric results.
- To avoid contamination, you should use a small aperture (3 pix diameter in this case).

- The calculation of coordinates is a new option in OSA 5.
- We use 2 different methods:
 - Satellite attitude.
 - The 5 photometric stars in science shots.

Green points: calculated source centroids. In the worst case, the precision is better than 1pix (1σ) .

SERC.J.DSS1, Filter B OMC, Filter V



- Nowadays we uses almost always the 5 photometric stars in science shots.
- This method gives better results than using only the satellite attitude.

Best calculated source centroids (more than 300 points during 7 months) $1\sigma(RA_FIN) = 0.066pix = 1.2"$ $1\sigma(DEC_FIN) = 0.074pix = 1.3"$

SERC.J.DSS1, Filter B

OMC, Filter V

- B X

Create mosaic images

• Example: NGC 4151.

• It is a Seyfert 1 galaxy.

General	<u>S</u> ave
ogDOL: ./og_omc.fits[GROUPING] browse	<u>S</u> ave As
startLevel: COR 💌	<u>R</u> un
endLevel: IMA2 💌	<u>Q</u> uit
	<u>H</u> elp
Good Time Intervals	hidden
GTI_gtiUser: browse	
GTI_TimeFormat: IJD 💌	
GTI_Accuracy: any 💌	
Source Fluxes and images	
IMA_timestep: 1 🚔 IMA_onlyImage: 🗹 checked: yes	
IMA_minshottime: 0 🚔 IMA_scienceImage: 🗹 checked: yes	
IMA_maxshottime: 300 🖨 🛛 IMA_triggerImage: 🗖 checked: yes	
IMA_omc_id: 3017000185	

omc science analysis 🖷

Create only science images, no triggers.

Its OMC ID is


3017000185.

Create mosaic images

- Images are created and corrected (BIAS, dark current, flatfield and photometric zero point) by the Offline Standard Analysis.
 OMC Standard Analysis has not been designed to extract
- photometric light curves of mosaics.

OMC, filter V

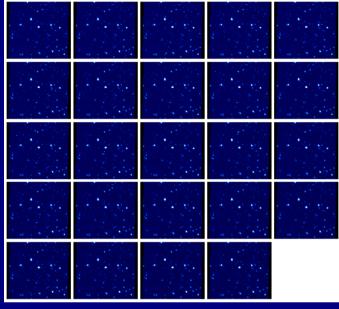
Create trigger images

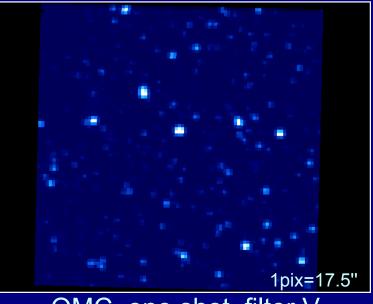
- Example: 1A 0535+26.
- It is a Be/X-ray binary pulsar.

Create only trigger images.

omc_science_ana	lysis	_ = ×
General		<u>S</u> ave
ogDOL: startLevel:	/og_omc.fits[GROUPING] browse	<u>S</u> ave As <u>R</u> un
endLevel:		Quit
Good Time Intervals		<u>H</u> elp hidden
GTI_gtiUser:	browse	
GTI_TimeFormat:	IJD 🔽	
GTI_Accuracy:	any 💌	
Source Fluxes and i IMA_timestep: IMA_minshottime: IMA_maxshottime: IMA_omc_id:		
init_onit_id.		

Create trigger images


- COR level is not available for trigger data (they are built up to level PRP).
- Then, the user should subtract BIAS, dark current, apply flatfield and photometric zero point. All what you need is in the data structures.



DSS2, filter B

All OMC shots

OMC, one shot, filter V

These are a few examples, but new OMC light curves are waiting for you.