

FSSC Science Tools

Using the LAT Catalog for Analysis

Science Support Center

First LAT Catalog (1FGL)

- Released 14 January 2010
 - Updated once on 4 February
- Available from FSSC at:

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/

- Full Catalog in FITS format
- Preprint of LAT Catalog papaer and Catalog column descriptions
- XML file containing output models for each source
- DS9 region files (coming soon!)
- Change log for content updates
- Also available as a BROWSE table:
 - Allows for queries/searches based on Catalog content

Science Support Center

1FGL Catalog

Cuts used for analysis

- 100 MeV 100 GeV
- Integrated data for 4 August 2008 4 July 2009 (11 months)
- Rocking angle < 43° (more recent data requires a looser cut)
- Excluded 20 min around GRB 080916C and 300 sec around GRB 090510

Catalog includes

- 1451 sources with Test Statistic ≥ 25
- Positions in celestial and galactic, 68% and 95% confidence error ellipses
- Total flux (>1 GeV), source significance
- Average flux in 5 energy bands (.1-.3-1-3-10-100 GeV) with significance per band
- Overall spectral index, pivot energy, curvature index
- Flux per month, variability index
- Associations with known sources and other gamma-ray catalogs
- Error flags to indicate possible concerns with selected sources

Science Support Center

Source Identification

- Three types of sources in the catalog
 - Identified indicated by an uppercase class type (e.g. PSR)
 - Require periodic signature, correlated variability, or correlated spatial morphology
 - Associated indicated by a lowercase class type (e.g. bzq)
 - >80% probability of being associated with the indicated source
 - Associated sources are considered "unidentified," as they do not meet the requirements above
 - Unassociated class type left empty

Science Support Center

Sensitivity

- Factor of 10 difference depending on location
 - Structure is mostly due to Galactic diffuse background
 - At high latitudes (|b|>30), sensitivity is below 10⁻² ph/cm²/s
 - Strongly dependent on source spectral index

Science Support Center

Diffuse Emission Uncertanties

- Compared output using two different diffuse models
 - With good statistics, 10% of the background can still be significant

In the Galactic plane, dispersion due to diffuse model is 1.8 σ

Outside the plane, dispersion is 0.7σ

Science Support Center

Source Confusion

- Overlapping PSFs
 - Spectrally weighted PSF is much larger for soft sources
 - Outside the plane, average separation is ~3°
 - Much larger than r₆₈ (0.8°) at 1 GeV
 - In the plane, sources clearly not separated (below)
 - Possibly unmodeled diffuse emission
 - 15° region of the Galactic Ridge
 - 1 100 GeV
 - Crosses are sources
 - Pixel size = 0.2°
 - Strong galactic diffuse component introduces bias against soft sources

Science Support Center

Cautioned sources

- Certain source names end with a "c"
 - "c" indicates you should treat these sources carefully
 - "c" sources are **unidentified** sources flagged for one of three reasons
 - They are located within the Galactic ridge (|I|<60°, |b|<1°)
 - They are coincident with peaks in Galactic gas maps
 - They are located in a region with many LAT sources (overlapping PSFs)
- Galactic ridge is a difficult region
 - Many sources, overlapping PSFs
 - Low source to background ratio (<50% below 3 GeV)
 - Large uncertainties in Galactic diffuse model in this region

Science Support Center

Using the Catalog for Data Analysis

- Useful to select specific sources for further study
 - More or less data than in the catalog
 - Compare output with different spectral models
 - Add fainter sources to reduce residuals
- Very useful to define an initial point-source model
 - Fitted parameters from the catalog can be an initial guess for future fitting, or held fixed for investigation of other sources
 - XML model results from catalog analysis are good model inputs
 - Use a text editor to create the XML, or
 - Use modeleditor gui to generate the XML
 - Python script also available to generate initial model file

Science Support Center

Finding Interesting Sources

- Source variability
 - Light curves and variability index for each source (available in Browse)
 - Variability index is χ^2 against constant hypothesis (~250 sources)
 - Pulsars are stable within 3%
 - Bright blazars are very clearly variable

Spectral shape

- 5-band initial spectrum for each source
 - Curvature index is χ^2 against power-law spectral shape

200 250 300 350 400 450 500 550

Time (days since 2008 January 1st)

10

0.08

0.06

0.04

0.02

Typical spectrum is broken, so power-law estimate is high

Upper limits are given for bands or intervals where the source is not significant

ISDC Saa-Fee Course, 14 March 2010

Science Support Center

Finding More Interesting Sources

Source Associations

- Positional associations with other gamma-ray catalogs
 - 3rd EGRET, Revised EGR, and First AGILE catalogs
- Probabilistic associations with likely source catalogs
 - Pulsars, SNRs, PWNe, blazars, other AGN, etc.
- Find your favorite source!

Be aware...

- For studies at low Galactic latitudes and toward prominent local clouds, be aware that some 1FGL sources may be unresolved diffuse emission
- Whether or not to include such sources in the source model is a case-by-case decision

Science Support Center

Source Model Structure

```
K?xml version="1.0" ?>
          <source_library title="source library">
                                        Diffuse components may be scaled
          <!-- Diffuse Sources -->
                                        by a constant or power law
          <source name="GAL_v02" type="DiffuseSource">
              <spectrum type="PowerLaw"> ←
    Leave -
                 → Kparameter free="1" max="10" min="0" name="Prefactor"
              scale="1" value="1.22"/>
   parameters
                   free (1) to
                   have them fit spatialModel file="/net/users/ddavis/lat/bkg/gll_iem_v02.fit" type="MapCubeFunction">
                   by likelihood
              </spatialModel>
          </sounce>
          <source name="EG_v02" type="DiffuseSource">
              <spectrum type="FileFunction" file="/net/users/ddavis/lat//bkg/isotropic_iem_v02.txt">
                   </spectrum>
              <spatialModel type="ConstantValue">
                   </spatialModel>
          Scale is used to interpret results
          <!-- Target Sources -->
          <source name="L3c454" type="PointSource">
Change
          ➤ <spectrum type="PowerLaw2">
spectral
             ⟨parameter free="1" max="10000" min="0.0001" name="Integral" scale="1e-07" value="15.6325" />
             ⟨parameter free="1" max="5" min="1" name="Index" scale="−1" value="2.507" />
models for
             different
             <pr
            source types
            <spatialModel type="SkyDirFunction">
             </spatialModel>
```

Science Support Center

Building the Source Model

- Model should cover both the ROI and the source region
 - ROI includes the data you have selected
 - Primary source, and nearby sources should have appropriate parameters left free for the fit
 - Source region is the modeled area, and includes sources outside the data region
 - Set parameters for sources outside your ROI to the values in the catalog
 - No data available for a proper fit

Science Support Center

Available Models

- ▶ A listing of all available models and their forms are at:
 - http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
 - Available models include:

Constant Gaussian

Power Law Log Parabola

Broken Power Law Exponential Cutoff

BPL with Exp Cutoff PL with Superexponential Cutoff

Band Function User-defined Function

Also several spatial models are available:

Constant Value Sky Direction Function (point only)

Spatial Map (extended sources) Map Cube Function (usually diffuse)