

INTEGRAL Tutorial Session

SGRs: the giant outburst of 1E 1547.0-5408

isolated pulsars

Radiated power: losses due to a rotating dipole (Larmor eq.)

Radiative losses spin down the NS ($\dot{E}_{rot} < 0$)

$$B \simeq 6.4 \ 10^{19} \sqrt{P\dot{P}} \ [\text{G}]$$

$$\tau = \frac{P}{2\dot{P}}$$

Emission process of the Crab

- data on the Crab PWN collected on >5.5 yr
- study the variability in intensity and spectral shape with Energy with SPI.
- single power-law cannot explain the data
- calibration of SPI based on ground calibrations and MonteCarlo simulations → absoulte measure of the Crab emission

 average spectrum of the PWN+pulsar over all phases

the PWN seen with SPI

- Analysis on 3 different epochs:
 - rev.43-45
 - rev.239-605
 - rev.665-727
- broken powerlaw needed, energy break ~ 100keV
- data collected up to 6MeV, fitted with pl Γ_{soft} =2.0 Γ_{hard} =2.2
- at low energies high S/N
- curved slope emission due simultaneously to the charged particles distribution and geometry of the magnetic field.
- Great stability in the emission, useful to test stability in the detector

the Crab pulsar

- possibility to go in deeper detail analyzing the phase-emission of the pulsar
- Crab pulsar, analyzed in almost all energy bands
- P=33.5ms
- double peak structure (P1, P2), phase separation 0.4
 - what vary is: intensity, height, width
 - P1 dominant at low X energies
- INTEGRAL data analyzed from 3keV (JEM-X) up to 2 MeV (SPI)

$$F(E) = K E^{-(a+b\log(E))}$$

Analysis of curves a (phase), b (phase)

Polarization measures with SPI

θ: Compton scatter angle

- linearly polarized γ-photons scatters ⊥ incident polarization vector (η) → φ ≈ 90°
- multiple events on SPI allow measure of φ distribution

assumed from center to center of each detector on SPI

SPI detetor

an example: the Crab

- polarization measures of H.E. radiation to locate where particles are accelerated: energetic e- produce γ-rays within the magnetic field structure in the PWN, but they radiate only on very short-time scale, i.e. close to the accelerating zone
- measured in off-pulse phase with SPI
- in 0.1-1 MeV (→ Compton scattering range)
- looking for asymmetries in the φ distribution, comparing data with simulated events

Dean et al. 2008

- data consistent with a linearly polarized beam, 123°±11° ≈ pulsar spin orientation
- polarization detected from the vicinity of Crab pulsar, 46±10% → high uniformity in the B field configuration associated with the unpulsed emission

what's a magnetar? (AXP, SGR)

- Isolated neutron star
 - pulsated emission: P (2-12 s), Pdot $(10^{-13} - 10^{-10} \text{ s s}^{-1})$.
- flares, erratic burst activity: not predictable starting time.
 - generally 0.1-1 sec, L_{peak}~10⁴¹ erg/s
 - giant flares (3) $L_{peak} \sim 10^{45-47}$ erg/s

 $B_{\text{surf}} \sim 10^{14-15} \,\text{G} > B_{\text{crit}} \sim 4 \cdot 10^{13} \,\text{G}$ 1e+05 27-12-2004 SGR 1806-20 100 medium flares in SGRs giant flare (Palmer et al. 2005)

common flares in AXPs and SGRs

(from Woods, Thompson 2004)

The "standard" model

- Isolated NS with huge B field
- Internal field: toroidal ≈ poloidal component
- Induced rotation of surface layers
- Gradual (quasi-plastic) deformation of the crust
- The external field twists up (Thompson, Lyutikov & Kulkarni 2002 or TLK'02)

Catching AXPs from the tails

- first high-energy detection (>20 keV): SGR 1806-20, during outbursts
- integrating 2.5Ms (2003-2004), INTEGRAL detect unexpected emission from SGR 1900+14 in *quiescence* (Götz et al. 2006)
- for the sample of magnetars now detected: hard power law tails Γ≈ 1-3 (20-100keV)
- Hard Emission pulsed: confirmation it's coming from the pulsar
- distorted BB: up-scattering of photons by charged particles in the magnetosphere

deeper view of AXP 1RXS J1708-4009

- Analysis of the whole X-ray emission: integration of INTEGRAL-XMM Newton-RXTE data → up to ~175 keV
- 20-175 keV emission (7.7 10⁻¹¹ erg/cm²/s)
 2.3 times the emission in 2-10 keV
- no evidence for a spectral breaking below 300 keV
- no significant time variability above 20keV

Ph I II

O 0.5 1 1.5

Phase

den Hartog et al. 2008

pulse profile 1RXS J1708-40 with INTERAL in 20-270keV (den Hartog et al. 2008)

phase-resolved spectrum

den Hartog et al. 2008

- spectral components: hard pulse >4keV, ph. 0.8 soft pulse 2-4 keV, ph.0.4 very soft pulse <2keV, p.0.8
- the hard one dominates for~ 1/3 of the period

INTEGRAL permits analysis of phase-resolved spectra

Extreme spectral variations with *phase* discovered in the 1-200 keV emission: gradual change soft single powerlaw Γ =3.6 \rightarrow complex multi-component shape \rightarrow hard single powerlaw Γ =0.99

constraint on the topology of the magnetic field

results similar to 4U 0142+61 not explained under the standard magnetar model → more details neede in the model (e.g. more complexity in the geometry of the B field)

The strange case of 1E1547.0-5408

- X-ray source known since 1981, classified as AXP only in 2007 (Gelfand & Gaensler, ApJ)
- P = 2.07 s (smallest period among magnetars)
- The January 22, 2009 enhanced activity major active episode detected by Swift INTEGRAL was directed 60° away from the source ACS of SPI detected ~200 bursts (0.1-10s)
- L > 10^{42} erg/s \rightarrow >> L_{AXP} , comparable to SGR giant flares
- cluster of bursts typical of SGRs.

A zoom on the 4 major bursts...

from the 2 dataset it is possible to extract information on HR, statistical analysis on burst duration, time interval between the bursts

The burst timing characteristics can be followed very well.

References:

- Jourdain E., Roques J.P. 2009 ApJ 704, 17
- Eckert D. et al. 2010 A&A 509, 33
- Dean A.J. et al. 2008, Science, 321, 1183
- Mineo T. et al. 2006 A&A 450, 617
- Savchenko V. et al. 2010 A&A 510, 77
- Mereghetti S. et al. 2009 ApJ, 696, 74
- den Hartog P.R., et al. 2008a A&A 489, 245
- den Hartog P.R., Kuiper L., Hermsen W. 2008 A&A 489, 263